Со	urse No	Course Name	L-T-P-Credits	
Μ	A 405	Ordinary Differential Equations	3-1-0: 4	
Prerequisite: nil				
Course Objectives:	ordinary diff which will h	The objective of this course is to present several tools and techniques for solving ordinary differential equations (ODEs). It also discusses some fundamental theories which will help in understanding the qualitative properties of the solutions without solving the ODEs explicitly.		
Course	After successful completion of the course, students will be able to:			
Outcomes:	 Construct relize th Solve set variation Gain kn independ Solve sy method. Determinature. 	 relize the idea of Wronskian and related theorems. 3. Solve several linear ODEs of second and higher order by operator method, variation of parameter method and series solution method. 4. Gain knowledge on the distribution of zeros for solutions (or linearly independent solutions) of second order liner homogeneous ODEs. 5. Solve system of linear OEDs by eigenvalue method and matrix exponential method. 6. Determine fixed points of autonomous equations and examine their stability nature. 		
Module		Contents	Hours	
Ι	theorems, Gronwa	queness of Initial Value Problems: Pica all's inequality, continuation of solution ce, continuous dependence.	0	
Π	method of varia separation theorem	Second and higher order linear equations: Euler-Cauchy equations, 9 nethod of variation of parameters, Sturm comparison and Sturm separation theorems, Power Series and Frobenius series solution methods, Bessel functions and Legendré polynomials.		
Ш		ifferential equations: fundamental soluti l solution, behaviour of solutions.	ons, Wronskian, 6	
IV	points, proper an	autonomous systems and phase space and improper nodes, spiral points and avior: stability (linearized stability	saddle points.	

Boundary Value Problems for second order equations: Green's function, V 7 Sturm-Liouville problems.

Essential Readings:

- S. L. Ross, "Differential Equations", Wiley India, 3rd edition, 2007.
 G. F. Simmons and S. G. Krantz, "Differential Equations: Theory, Technique, and Practice", McGraw Hill, 1st edition, 2017.

Supplementary Readings:

- W. E. Boyce and R. C. DiPrima, "Elementary Differential Equations and Boundary Value Problems", Wiley, 9th edition, 2015.
- L. Perko, "Differential Equations and Dynamical Systems", Springer Verlag, 3rd edition, 2001.
 E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations", McGraw Hill, 1st edition, 2017.