Course No	Course Name	L-T-P-Credits	
MA 408	Measure Theory and Integration	3-1-0: 4	
	Prerequisite: nil		
Course Objectives:	Measure Theory provides a foundation mathematics such as probability theory, functional analysis. The aim of this cour elements of Measure Theory providing th opportunity to develop skills in modern and a rigorous foundation for other branches of the	for many branches of stochastic process and rse is to learn the basic e students an additional alysis as well as providing mathematics.	
Course Outcomes:	After successful completion of the course, s	tudents will be able to:	

1. Understand sigma algebra and measurable sets and measurable functions.

- 2. Understand the fundamentals of measure theory and be acquainted with the proofs of the fundamental theorems underlying the theory of integration.
- 3. Understand the need of the measure and integration.
- 4. Demonstrate the understanding of Lebesque integral and be able to distinguish it from Riemann integral.
- 5. Gain the knowledge of basic properties of L_p spaces.
- 6. Develop a perspective on the broader impact of measure theory in different fields.

SYLLABUS

Module	Contents	Hours
Ι	Measure: Sigma-algebra, Measures, measurable sets, Lebesgue outer measure, Lebesgue measure, Borel set, Borel sigma-algebras, Borel measure.	09
II	Measurable functions: Measurability, pointwise convergence, almost everywhere convergence, Egoroff's theorem, Lusin's theorem.	09
III	Integration: Integration of simple functions, positive functions, measurable functions; Fatou's lemma, convergence theorems; signed measures, Hahn and Jordan decomposition, Radon-Nikodym theorem.	12
IV	L_p spaces: L_p spaces, Minkowski and Hölder inequalities, Density.	06

Essential Readings:

- 1. H. L. Royden and P. M. Fitzpatrick, "*Real Analysis*", Pearson Education India, 4th edition, 2015.
- 2. D. L. Cohn, "Measure Theory", Birkhäuser, 2nd edition, 2013

Supplementary Readings:

- 1. E. M. Stein and R. Shakarchi, "*Real analysis: Measure Theory, Integration, and Hilbert Spaces*", New Age International Private Limited, 1st edition, 2010.
- 2. G. De Barra, "*Measure Theory and Integration*", New Age International Private Limited, 1st edition, 2013.