Course No	Course Name	L-T-P-Credits	
MA 409	NUMERICAL ANALYSIS	3-0-0: 3	

Prerequisite: NIL

Course Objectives: The objective of the course is to provide a theoretical understanding of some numerical methods/techniques which will be helpful in solving several mathematical problems occurred in real world situation.

Course Outcomes: Upon successful completion of the course, students will be able to:

- 1. Solve systems of linear equations using iterative methods.
- 2. Obtain approximate root(s) of algebraic and transcendental equations.
- 3. Construct a polynomial for a given set of data using interpolation.
- 4. Evaluate integrals using numerical integration formulae.
- 5. Solve initial value problems using single and multi-step methods.

SYLLABUS

Contents

Ι	Systems of Linear Equations: Gaussian elimination, pivoting strategies, vector and matrix norms, error estimates and condition number; iterative techniques for linear systems: Jacobi, Gauss Seidel.	8
II	Iterative Method for Non-Linear Equations: Bisection method, fixed point iteration schemes, Newton's method, secant method.	6
III	Interpolation: Polynomial interpolation-Lagrange and Newton's divided difference; piecewise interpolation.	8
IV	Numerical Integration: Newton-Cotes quadrature formulas, composite Newton-Cotes quadrature formulas, Gaussian quadrature formulas.	6

V Numerical Solution of IVPs: Single step methods, multi-step methods.

Module

8

Hours

Essential Readings:

- 1. K. E. Atkinson, "An Introduction to Numerical Analysis" John Wiley & Sons, 2nd edition, 1989.
- 2. M. K. Jain, S. R. K. Iyengar, and R. K. Jain, "Numerical Methods for Scientific and Engineering Computation", New Age International, 6th edition, 2012.

Supplementary Readings:

- 1. B. Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Prentice Hall, 1st edition, 2007.
- 2. D. Kincaid and W. Cheney, "Numerical Analysis: Mathematics of Scientific Computing", AMS, 3rd edition, 2010.
- 3. G. M. Phillips and P. J. Taylor, "*Theory and Applications of Numerical Analysis*", Academic Press, 2nd edition, 1996.