Course No	Course Name	L-T-P-Credits
MA 531	GRAPH THEORY	3-0-0: 3
	Prerequisite: NIL	
Course Objectives:	This course is intended to introduce the fundamental theory of graphs as part of mathematics and its diverse applications in many areas of computing, social and natural sciences.	
Course Outcomes:	After successful completion of the course, students will be able to:	
	• Have the knowledge of gr Hamiltonian graphs, tree and	lanar graphs and their duals. ing related problems.

SYLLABUS

Module	Contents	Hours
Ι	Graphs:	10
	Subgraphs, paths and cycles, isomorphism, cut vertex, bridge, block, bipartite graph, complement of a graph, line graph, degree sequence, graphic sequences, Havel-Hakimi theorem, trees, spanning trees, Cayley's theorem, metric in graph, matrix representation of graph	
II	Connectivity:	10
	Vertex and edge connectivity, Whiteney's theorem, n-connected graphs Mengers' theorem. Traversability: Hamiltonian graphs, Euler graphs, planar graphs, Kuratowski's theorem, dual graphs, crossing numbers, Euler formula. Non planar graphs.	
III	Introduction to Matching:	6
	Berge's theorem. Bipartite matching: Hall's Marriage theorem, Konig Egervary Theorem.	-
IV	Graph coloring, chromatic polynomials, the four color problem. Digraphs: connectedness - acyclic digraph, strong digraphs, tournaments, directed trees, binary trees, weighted trees and prefix codes, BFS, DFS, Kruskal's, Prim's, Dijkstra's and Floyd's algorithms.	10

Essential Readings:

- 1. D. B. West, "Introduction to Graph Theory", Pearson Education India; 2nd edition, 2015.
- 2. C. R. Foulds, "Graph Theory Applications", Springer, 1st edition, 1995.

Supplementary Readings:

- 1. N. Deo, "*Graph Theory with Applications to Engineering and Computer Science*", Prentice Hall India Learning Private Limited, New edition, 1979
- 2. F. Harary, "Graph Theory", Narosa Publishing House, 2001.
- 3. B. Bollobas, "Modern Graph Theory", Springer Verlag, 1st edition, 2002.