Course N	o Course Name L	-T-P-Credits
MA 532	Тороlоду	3-0-0:3
	Prerequisite: nil	
Course Objectives:	The aim of the course is to provide for the students at theory of topological spaces building foundation for highe mathematics.	n introduction to r studies in pure
Course Outcomes:	 Understand a topological space and provide example topological spaces. Understand basis and sub basis of topological space able to produce bases and sub bases of various star spaces. Demonstrate the understanding o open sets, closed concepts. Understand subspace topology and related result. Demonstrate the understanding of product space and Use continuous functions and homeomorphisms structure of topological spaces. Demonstrate knowledge and understanding compact topological spaces. Apply theoretical concepts in topology to underst applications. 	oles of standard s and should be idard topological sets and related quotient space. to understand t and connected tand real world
Module	Contents	Hours
l Defi	nition and examples of topological spaces, basis and sub ba	asis. 6

- I Definition and examples of topological spaces, basis and sub basis, order topology, subspace topology, closure, limit point, boundary, interior.
- II Continuity and related concepts, product topology,metric topology, 8 quotient topology, countability axioms, Lindel of spaces and separable spaces.
- III Connected spaces and connected sets, component, path 5 connectedness, path component, local connectedness, local path connectedness.
- IV Compact spaces and compact sets, limit point compact and 5 sequentially compact spaces, locally compact spaces, one point compactification, finite product of compact spaces, statement of Tychonoff's theorem.

V Separation axioms, Urysohn's lemma, Tietze's extension theorem, statement of Urysohn's metrization theorem.

Essential Readings:

- J. R. Munkres, "Topology", Pearson Education India; 2ndedition, 2015
 G. F. Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill Education, 1stedition, 2017

Supplementary Readings:

- C. W. Patty, "Foundations of Topology", Jones & Bartlett Publishers, 2010.
 K. D. Joshi, "An Introduction to General Topology", New Age International Private Limited, 2017