A SA A MANANA A SA A SA A SA A SA A SA A	OF TECHNOLOGY	a da	National Institute of Technology Meghalaya An Institute of National Importance																(CURRICULUM		
Program	nme	Ba	Bachelor of Technology Year of Regulat												lation		:	2019-20				
Departm	nent	Ma	Mathematics Semester											er				IV				
Course Code		6									Credit Structure			;	Mar			s E	Distribut	ution		
		Course Name					Pre-Requisite			I	L T P (С	С		INT		MID I	END		Total	
MA 534	ļ	Numerical solution to partial differential equations					MA 409			3	0		0	3			50	5	50	100		200
		To provide an idea about the numerical solution techniques of					CO1	Able differ	Able to understand basic introduction of partial differential equations and difference representation of derivatives.								ations and fi	nite	;			
Course Objectives		PDE's using finite difference methods To derive and			Course Outcomes		CO2	Able equat	ble to understand numerical solution techniques to solution quation						vlve first order hyperbolic							
		discus: metho	s the ds in de			CO3	Able	Able to understand numerical solution techniques to s							solve parabolic equation							
		and w	orked			CO4	Able	Able to understand numerical solution techniques to						solve hyperbolic equation.								
		examp	ies.				CO5	Able	ble to understand numerical solution techniques to solve						ve ellipt	e elliptic equation						
							CO6	Able nume	Able to understand convergence and von-Neumann stability and numerical schemes.								alysis of various					
N	<u> </u>	Mapp	ing with	h Prog	gram Outc	ome	es (POs)								Mappi	ing with PS	Os					
NO.	COs	PO1	PO1 PO2 PO		3 PO4 F		5 PC	06 PC	6 PO7 PC		8 PO9		PO10	0 PO11		PO1	2		PSO1	PSO2		PSO3
1	CO1																					
2	CO2																					
3	CO3																					
4	CO4																					
5	CO5																					
6	CO6																					
									SY	(LLAB	US											~ ~
No.							C	ontent									-	Hours CO:				COs
Ι	Introduction to Partial Differential Equations: Well posed PDE; first order hyperbolic equation, initial and boundary conditions, role of characteristics. Classification of second order PDE's, finite difference representation of derivatives.										es.	04				C01						
	Numerical solutions to first order hyperbolic PDE's:														\uparrow							
П	Analytical solution of first oder hyperbolic PDE's. Numerical integration along characteristics, Upwind method, Lax-Wendroff method and worked examples with comparison with analytical solutions												06				CO2					
	Nume	Numerical solutions to parabolic equation:															CO3			CO3		
Ш	Solution of one dimensional heat equation, forward time central space (FTCS), backward time central space (BTCS), Schmidt explicit method and Crank-Nicolson implicit method, convergence and von-Nuemann stability analysis.									e	12				CO6							
IV	Nume Explic	e rical s o cit and i	olutions mplicit	s to hy metho	y perbolic ods for so	equa lving	ation:	equatio	on, st	tability	and	con	ivergen	nce an	nalysis	l.		07 CO CO			CO4 CO6	
	Num	Numerical solutions to allintia aquations																				
v	Laplace equation and Poisson equation, five point formula, successive over relaxation (SOR) method and the alternating direction implicit (ADI) scheme.									07				CO5								
Total Hours									36													

Essential Readings

1. G. D. Smith, "Numerical Solution of Partial Differential Equations: Finite Difference methods", Oxford University Press.

2. E. Isaacson and H. B. Keller, "Analysis of Numerical Methods", Dover Publications, Revised edition , 2012.

Supplementary Readings

1.	M. K. Jain, S.R.K. Iyengar and R.K. Jain, "Computational Methods for Partial Differential Equations", New Age In	ternational Pvt.
	Ltd, 2016.	

2. L. Fox, "Numerical Solution of Ordinary & Partial Differential Equation", Literary Licensing (LLC), 2013.

3. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th edition, 2012