merical Linear Algebra erequisite: Linear Algebra ive of the course is to introdu	3-0-2: 4 uce classical algorithms for
ive of the course is to introdu	uce classical algorithms for
	uce classical algorithms for
solutions of the problems.	bra and estimate stability of
essful completion of the course, ive and use the numerical fessional solution of a given lim- lerstand the theoretical basis hods for solving linear systems nonstrate the priciples of SVD n for solving linear least squar blems . cribe the principles of Krylov oldi iteration, GMRES, Lancz dients. alyze rate of convergence a prithms. blement numerical methods in N	techniques needed for a lear algebra problem. s for direct and iterative of equations. and QR algorithm and use re problems and eigenvalue subspace methods, like the zos iteration and conjugate and stability of numerical
	blems. cribe the principles of Krylov oldi iteration, GMRES, Lanc lients. lyze rate of convergence a prithms.

Module

Contents

Hours

- I Review of vector spaces, bases, vector and matrix norms, condition 04 number and stability. IEEE floating point arithmetic, analysis of round-off errors, stability and ill-conditioning
- II Direct methods for solving linear equations: Gaussian elimination, 08 LU decomposition, Cholesky method, stability and sensitivity analysis.
- III Linear least-squares: Gram-Schmidt orthonormal process, rotators 10 and reflectors, QR factorization, stability of QR factorization, QR method linear least-squares problems, rank deficient least-squares problems, sensitivity analysis..
- Eigenvalues and singular values-symmetric eigenvalue problem, 14 non-symmetric eigenvalue problem, power method, inverse power method, QR-algorithm, SVD, Krylov subspace method, Lanczos algorithm, sensitivity analysis of eigenvalues.

Software Support: MATLAB

Essential Readings:

- 1. D. S. Watkins, "Fundamentals of Matrix Computation", Wiley, 3rd edition, 2010.
- 2. G. H. Golub and C. F. Van Loan, "*Matrix Computation*", Hindustan Book Agency; 4th edition, 2015.

Supplementary Readings:

- 1. L. N. Trefethen and D. Bau, "Numerical Linear Algebra", SIAM, 1997.
- 2. J. W. Demmel, "Applied Numerical Linear Algebra", SIAM, 1st edition, 1997.
- 3. B. N. Datta, "*Numerical Linear Algebra and Applications*", Prentice Hall India Learning Private Limited, 2nd edition, 2010.