Course No	Course Name	L-T-P-Credits
MA 537	COMPUTATIONAL FLUID DYNAMICS	3-0-0:3
	Prerequisite: Fluid Mechanics (MA410)	
Course Objectives:	The objective of the course is to provide a theoretical knowledge of second order partial differential equations and numerical solution of those equations using finite difference method(s) with special emphasis on fluid dynamics problems.	
Course Outcomes:	After successful completion of the course, students will be able to:	
	 Classify second order PDEs and know var and boundary conditions. Define and formulate the flow problem pro numerical solution using finite difference m Assess the accuracy of numerical solutions known solution of simple problems and l studies. 	tious types of initial operly and obtain the nethods. Is by comparing with by mesh refinement

SYLLABUS

Module	Contents	Hours
Ι	Classification of Partial Differential Equations and Overview of	8
	Numerical Methods:	
	Classification of 2nd order PDEs: parabolic, elliptic and hyperbolic;	
	boundary and initial conditions; role of characteristics, over view of numerical methods.	
II	Finite Difference Method:	14
	Discretization, discretization error, upwind and downwind schemes, higher order methods, implicit and explicit methods, ADI Method, Stability of hyperbolic and elliptic equations, consistency, tri-diagonal systems.	
III	Grid Generation Method:	14
	Definition and types of grid, Transformation of equation, Matrices and	
	Jacobians, Stretched Grids, Elliptic Grids, Adaptive grids. QUICK and SIMPLE algorithms.	

Essential Readings:

- 1. J. D. Anderson Jr., "*Computational Fluid Dynamics*", McGraw-Hill International edition, 1995.
- 2. S.V. Patankar,"Numerical Heat Transfer and Fluid Flow", Hemisphere, 2017.

Supplementary Readings:

- 1. H. K. Versteeg and W. Malalasekera, "*An introduction to computational fluid dynamics: The finite volume method*", Pearson Education, 2nd edition, 2008.
- 2. T. J. Chung, "*Computational Fluid Dynamics*", Cambridge University Press, 2nd edition, 2014.
- 3. T R Chandraputla and A D Belegundu, "*Introduction to Finite Elements in Engineering*", Prentice Hall of India, 4th edition, 2015.