Course No		Course Name	L-T-P-Cr	redits
MA 550		Mathematical Biology	3-0-0: 3	3
Prerequisite: nil				
Course Objectives:	The objective of this course is to understand and analyze existing models exploring population dynamics. The possible phenomenon pertaining to the key component of the model are discussed. It also enhances skill to develop new models whice could address many interdisciplinary real world problems.			ls exploring components odels which
Course	After successful completion of the course, students will be able to:			
Outcomes:	 Analyze basic models in population dynamics such as Malthusian model, Logistic model, Lotka-Volterra prey-predator model, Rosenzweig-MacArthur model. Apply model based knowledge in fishery management to sustainable harvest of species. 			
	3. Establish s	stability analysis in delay differer odels.	itial equations applie	ed in prey-
	 Understand structural stability theory and singular perturbation theory which are useful in aggregation method for spatial structured models. Develop and analyze stage-structure models of predator and prey community. Apply impulsive differential equations to biological pest control theory. 			
SYLLABUS				
Module		Contents		Hours
Ι	Mathematical mode Malthusian model, Rosenzweig-MacArt models.	athematical model of population dynamics in continuous time, 6 althusian model, Logistic model, Lotka-Volterra prey-predator model, osenzweig-MacArthur model, dynamics of food chain and food web odels.		
Π	Exploitation in fishe predator system, Ma Economic Yield (M hydra effect in ecolo	xploitation in fishery model, Exploitation and oscillation results in prey- redator system, Maximum Sustainable Yield (MSY) policy, Maximum conomic Yield (MEY) policy, ecological resilience under harvesting, ydra effect in ecological systems.		
III	Delay differential eq persistence, local and	lay differential equations, population dynamics models with time delay, 5 resistence, local and global stability of the models, stability switching.		
IV	Structural stability, time scales, model dispersal, Marine Pro	Structural stability, singular perturbation theory, modeling with different 5 ime scales, model aggregation, multi-patch model with population dispersal, Marine Protected Areas (MPAs), Biological conservation.		
V	Stage-structure pop Impulsive differentia theory.	ulation models in continuous an al equations and application to biological	nd discrete time, ogical pest control	6

Essential Readings:

- J. D. Murray, "Mathematical Biology: I. An Introduction", Springer, 3rdedition, 2007.
 K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics", Springer, 1992 edition, 1992.

Supplementary Readings:

- M. Kot, "Elements of Mathematical Ecology", Cambridge University Press, 1stedition, 2001.
 C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources", Wiley Blackwell, 2ndedition, 1990.
- 3. V. Lakshmikantham, D. Bainov, P.S. Simeonov PS, "Theory of Impulsive Differential Equations", World Scientific, 1989.