

National Institute of Technology Meghalaya

An Institute of National Importance

CURRICULUM

Program		mme Bachelor of Technology in Computer Science and Engineering Year of Regulation											gulation	2019-20			
	epartme												ster	V			
Co	urse										Credit Structure				Marks Distribution		
Code CS205		Course Name Discrete Mathematics							L	Т	Р	С	INT	MID	END	Total	
									3	0	0	3	50	50	100	200	
		 This course introduces the elementary structures such as sets, graphs, and trees used in computer algorithms and systems. Define and understand the properties of some of the discrete structures in Mathematics. This course illustrates elementary proofs, proofs by induction, 									CO1	Able to acquire knowledge about different discrete structures of mathematics and identification of its application in computer science area Able to acquire knowledge about different methods of					
Course Objectives		deductive proofs in propositional and first order logic.3. This course explains the principles of counting; understand							Course Outcomes	CO2	proofs in propositional logic and first order predicate logic and identification of application in real world problemsAble to work out on different problems on counting						
		recurrence relations and generating functions.								CO3	recurrence relations and generating functions and solve these problems in real world scenarios						
		4. This course illustrates the understand the basic concepts of graphs, group and ring theory								CO4	Students will be able to apply discrete structure such a graphs to solve problems of connectivity, scheduling optimization etc.						
		5. This course introduces the formulation of generating function and series evaluations								CO5	Students will be able to express recurrence relations a solve them, represent sequences and series usi generating functions.						
No.	COs	Mapping with Program Outco								omes (POs)					Марр	ping with I	PSOs
NU.	COS	PO	01 PC)2 F	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSC
1	CO1	3	3		-	1	-	-	-	-	2	-	-	-	3	-	3
2	CO2	3	3		-	1	-	-	-	-	2	-	-	-	2	-	2
3	CO3	2	3		3	1	2	-	-	-	-	-	-	-	2	3	2
4	CO4	2			3	0	2	2	3	-	2	-	-	1	2	3	2
5	CO5	2	2		3	0	2	2	3	-	2	-	-	1	3	3	3
6	CO6	-	-		-	-	-	-	-		-	-	-	-	-	-	-
No.								Contont	SYLLA	802					Hours		COs
NU.		Content Introduction listory and Overview of discrete structure and general problems:Basic operations on sets, cartesian products, disjoint nion, power sets, inverse of functions, composition of functions, relations, properties of binary relations, equivalence elations and partitions. principle of inclusion and exclusion, pigeonhole principle													08		
I	union, relatio	power ns and p	sets, inve partitions.	rse of f		, 1			,	ns, propertie	s of bina	ry relation					
	union, relatio Princip Propos	power ns and p ple of in sitional	sets, inve partitions. Iclusion an	rse of f <u>nd exclu</u> Syntax	usion, p and se	oigeonhole	e principle			lity, validity			complete	eness.	08		CO1
	union, relatio Princip Propos Introdu	power ns and p ble of in sitional uction to	sets, inve partitions. aclusion and Logic: S p first ord	rse of f nd exclu Syntax er logic	usion, p and so	oigeonhole	e principle proof sy	ystems, s					complete	eness.	08 05		CO1 CO2
11	union, relatio Princip Propos Introdu Introdu Posets	power ns and p ole of in sitional action to action to	sets, inve partitions. aclusion and Logic: S o first ord o recurren s, chains a	rse of f nd exclu Syntax er logic ce relat	and so and so ions ar	bigeonhole emantics, ad generat	e principle proof sy ing functi	ystems, s ons	atisfiabil	lity, validity	7, sound	ness and					CO1
	union, relatio Princip Propos Introdu Introdu Posets	power ns and p ole of in sitional action to action to	sets, inve partitions. aclusion and Logic: S o first ord o recurren s, chains a	rse of f nd exclu Syntax er logic ce relat	and so and so ions ar	bigeonhole emantics, ad generat	e principle proof sy ing functi	ystems, s ons	atisfiabil		7, sound	ness and			05		CO1 CO2 CO2 CO3
 V	union, relatio Princip Propos Introdu Introdu Posets Graphs	power ns and p ple of in sitional action to action to , lattices s and the	sets, inve partitions. <u>aclusion an</u> Logic: S o first ord o recurren s, chains a eir basic p	rse of f nd exclu Syntax er logic ce relat nd anti- propertic	and so and so ions ar -chains es – de	bigeonhole emantics, ad generat	e principle proof sy ing functi	ons ubgraphs,	atisfiabil	lity, validity	, sound	ness and	n cycles,	trees	05 03		CO1 CO2 CO2 CO3 CO4 CO4

2. C. L. Liu, D. P. Mahapatra, "Elements of Discrete Mathematics", Tata McGraw Hill.

3. Harry Lewis and Rachel Zax, "Essential Discrete Mathematics for Computer Science", Princeton University Press, 2019

Supplementary Readings

- 1. Norman L. Biggs, "Discrete Mathematics", Oxford University Press.
- 2. Albert R. Meyer, Eric Lehman, and Frank Thomson Leighton, "Mathematics for Computer Science", Samurai Media Limited, 2010
- 3. V.K. Balakrishnan, "Introductory Discrete Mathematics", Dover Publications Inc., 2000