

National Institute of Technology Meghalaya

An Institute of National Importance

CURRICULUM

Programme Bachelor of Technology in Computer Science and Engineering Year of Regulation 2019-20

Department Computer Science and Engineering Semester IV

Course
Code

Course Name
Credit Structure Marks Distribution

L T P C INT MID END Total

CS 220 Principles of Programming Languages 3 0 0 3 50 50 100 200

Course
Objectives

To enable the students to learn about various constructs and their

respective comparisons in different high-level languages so that he can

choose a suitable programming language for solving a particular problem.

Course
Outcomes

CO1
Able to understand the history of programming languages and

introduce abstraction, the concept of different language

paradigms, and an overview of language design criteria.

To develop the student’s ability to understand the salient features in the

landscape of programming languages.
CO2

Avail to understand how the syntactic structure of a

language can be precisely specified using context-free

grammar rules in Backus-Naur form (BNF).

To provide the students to gain experience with these paradigms by using
example programming languages. CO3

Able to understand the abstractions of the operations that occur
during the translation and execution of programs.

To develop the student’s ability to gain experience with these paradigms
by using example programming languages. CO4

Able to understand the usage of data types in various languages.

CO5

Able to understand the procedure activation and parameter
passing; and exceptions and exception handling.

CO6

Able to understand the concepts like abstract data types,
subprograms, and will be able to apply them in a realistic
manner.

No. COs
Mapping with Program Outcomes (POs) Mapping with PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

1 CO1 2 0 0 0 0 1 2 0 1 1 0 0 2 1 1

2 CO2 2 3 1 1 0 2 1 0 3 2 1 2 1 2 2

3 CO3 3 2 1 0 2 3 0 1 0 1 3 1 3 2 2

4 CO4 1 0 3 2 0 2 1 0 3 2 1 0 1 2 2

5 CO5 2 0 1 0 2 3 1 0 1 2 1 0 3 2 3

6 CO6 1 2 0 3 1 2 0 2 0 1 0 0 2 3 2

SYLLABUS

No. Content Hours COs

I
 Introduction:

The Origins of Programming Languages, Abstractions in Programming Languages, Computational
Paradigms, Language Definition, Language Translation, The Future of Programming Languages;

2 CO1

II Language Design Criteria:
Historical Overview, Efficiency, Regularity, Security, Extensibility, C++: An Object-Oriented Extension of C,
Python: A General-Purpose Scripting Language;

2 CO1

II Syntax and Analysis Parsing:
Lexical Structure of Programming Languages, Context-Free Grammars and BNFs, Parse Trees and Abstract
Syntax Trees, Ambiguity, Associativity, and Precedence, EBNFs and Syntax Diagrams, Parsing Techniques and
Tools, Lexics vs. Syntax vs. Semantics, Case Study: Building a Syntax Analyzer for TinyAda;

6 CO2

IV Basic Semantics:
Attributes, Binding, and Semantic Functions, Declarations, Blocks, and Scope, The Symbol Table, Name
Resolution and Overloading, Allocation, Lifetimes, and the Environment, Variables and Constants, Aliases,
Dangling References, and Garbage, Case Study: Initial Static Semantic Analysis of TinyAda;

6 CO3

V Data Types:
Data Types and Type Information, Simple Types, Type Constructors, Type Nomenclature in Sample Languages,
Type Equivalence, Type Checking, Type Conversion, Polymorphic Type Checking, Explicit Polymorphism, Case
Study: Type Checking in TinyAda;

5 CO4

VI Expressions and Statements:
Expressions, Conditional Statements and Guards, Loops and Variations on WHILE, The GOTO Controversy and
Loop Exits, Exception Handling, Case Study: Computing the Values of Static Expressions in TinyAda;

4 CO5

VII Procedures and Environments:
Procedure Definition and Activation, Procedure Semantics, Parameter-Passing Mechanisms, Procedure
Environments, Activations, and Allocation, Dynamic Memory Management, Exception Handling and
Environments, Case Study: Processing Parameter Modes in TinyAda;

5 CO5

VIII
Abstract Data Types and Modules:
The Algebraic Specification of Abstract Data Types, Abstract Data Type Mechanisms and Modules, Separate
Compilation in C, C++ Namespaces, and Java Packages, Ada Packages, Modules in ML, Modules in Earlier
Languages, Problems with Abstract Data Type Mechanisms, The Mathematics of Abstract Data Types;

6 CO6

Total Hours 36

Essential Readings

1. Louden KC. Programming languages: principles and practices. Cengage Learning; 2011.

2. Sebesta RW. Concepts of programming languages. Pearson Education India; 2016.

3. Sethi R, Sethi R. Programming languages: concepts and constructs. Reading: Addison-Wesley; 1996 Feb 2.

Supplementary Readings

1. Gabbrielli M, Martini S. Programming languages: principles and paradigms. Springer Science & Business Media; 2010.

2. Dowek G. Principles of programming languages. Springer Science & Business Media; 2009.

3. Kedar S, Thakare S. Principles of Programming Languages. Technical Publications; 2009.

