

National Institute of Technology Meghalaya
An Institute of National Importance

CURRICULUM

Programme Bachelor of Technology in Computer Science and Engineering Year of Regulation 2020-21

Department Computer Science and Engineering Semester VI

Course

Code
Course Name

Credit Structure Marks Distribution

L T P C INT MID END Total

CS 304 Compiler Design 3 1 0 4 50 50 100 200

Course

Objectives

The Objectives of this course is to explore the principles, algorithms,

and data structures involved in the design and construction of

compilers.

Course

Outcomes

CO1
Specify and analyse the lexical, syntactic and semantic
structures of any computer programming language.

CO2

Separate the lexical, syntactic and semantic analysis into
meaningful phases for a compiler to undertake language
translation.

To discuss context-free grammars, and front-end phases of a

compiler: lexical analysis, parsing techniques, symbol tables, error

recovery.

CO3
Write a scanner, parser, and semantic analyser for
limited form of C like programming languages.

CO4
Convert source code in simple language into machine
code for a novel computer.

To discuss back-end phases of a compiler: code generation, and

different code optimization techniques.

CO5
Describe techniques for intermediate code and machine
code optimisation.

CO6
Design the structures and support required for compiling
advanced language features.

No. COs
Mapping with Program Outcomes (POs) Mapping with PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

1 CO1 3 2 3 1 0 0 0 0 0 0 0 0 1 2 2

2 CO2 3 3 3 3 0 0 0 0 0 0 0 2 1 1 3

3 CO3 2 3 3 1 3 0 0 0 1 0 0 0 1 1 3

4 CO4 2 1 1 2 2 0 0 0 1 0 0 0 1 1 3

5 CO5 2 1 2 1 1 0 0 0 0 0 0 0 1 1 3

6 CO6 2 2 2 3 0 0 0 0 0 0 0 2 1 1 3

SYLLABUS

No. Content Hours COs

I

Introduction to Compiler, Phases and passes,

02 CO1

II

Finite state machines and regular expressions and their applications to lexical analysis, Implementation of lexical

analyzers, lexical-analyzer generator, LEX-compiler: LEX/FLEX,

06
CO1, CO2,

CO3

III

Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic

specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG.

Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing,

predictive parsers

Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items,

Constructing SLR parsing tables, constructing Canonical LR parsing tables,

Constructing LALR parsing tables,

Using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables, constructing

LALR sets of items.

16
CO1, CO3

IV

Syntax-directed Translation: Syntax-directed Translation schemes,

Implementation of Syntax directed Translators,

Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples,

Translation of assignment statements, Boolean expressions, statements that alter the flow of control,

Postfix translation, translation with a top down parser.

More about translation: Array references in arithmetic expressions, procedures call, declarations, case statements.

Symbol Tables: Data structure for symbols tables, representing scope information.

13
 CO4,CO5

V

Run-Time Administration: Implementation of simple stack allocation scheme,

Storage allocation in block structured language. Error Detection & Recovery:

Lexical Phase errors, syntactic phase errors semantic errors.

11
CO1, CO6

Introduction to code optimization: Loop optimization,

DAG representation of basic blocks,

Value numbers and algebraic laws,

Global Data-Flow analysis.

Total Hours 48

Essential Readings:

1. A.V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, “Compilers-Principles, Techniques and Tools”, 2nd ed., 2006, Pearson Education.

2. K. Muneeswaran, “Compiler Design”, 1st ed., 2013, Oxford Publication.

3. P.H. Dave, H.B. Dave, “Compilers: Principles and Practice”, 1
st
 ed. 2012, Pearson Education.

Supplementary Readings:

1. Allen I. Holub, “Compiler Design in C”, 1
st
 ed.(Indian print), 2012, PHI.

2. John Levine, “Flex & Bison “, 1
st
 ed., 2009, O’reilly.

3. Torben Ægidius Mogensen, “Basics of Compiler Design”, 1
st
 ed., 2007, DIKU, University of Copenhagen

