|  |  |  | National Institute of Technology Meghalaya <br> An Institute of National Importance |  |  |  |  |  |  |  |  |  |  |  | CURRICULUM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Programme |  |  | Bachelor of Technology in Computer Science and Engineering |  |  |  |  |  |  |  | Year of Regulation |  |  |  | 2019-20 |  |  |
| Department |  |  | Computer Science and Engineering |  |  |  |  |  |  |  | Semester |  |  |  | V |  |  |
| Course Code |  | Course Name |  |  |  |  |  |  | Credit Structure |  |  |  | Marks Distribution |  |  |  |  |
|  |  | L | T | P | C | INT | MID | EN |  | Total |
|  | 325 |  |  |  |  |  |  |  | Modern Digital Arithmetic |  |  |  |  |  |  | 3 | 0 | 0 | 3 | 50 | 50 | 10 |  | 200 |
| Course Objectives |  | To teach different data representation used in a digital computer and device. |  |  |  |  |  |  | Course Outcomes | CO1 | Identify, understand and apply different number systems and codes. |  |  |  |  |  |  |
|  |  | CO2 | Understand and use the advanced addition algorithms for multioperand addition/subtraction. |  |  |  |  |  |  |
|  |  | To discuss different ways of hardware design for arithmetic operations. |  |  |  |  |  |  |  | CO3 | Understand the concept of advanced multipliers and their uses in different situations. |  |  |  |  |  |  |
|  |  | CO4 | Understand the concept of advanced dividers and their uses in different situations. |  |  |  |  |  |  |
|  |  | To introduce different techniques employed to speed up the computer and processing unit. | CO5 | Understand the concept of advanced pipelining and other methods used to increase the total throughput of an arithmetic circuit. |  |  |  |  |  |  |
| No | COs |  |  |  |  |  |  |  | Mapping with Program Outcomes (POs) | Mapping with PSOs |  |  |  |
|  |  | PO1 | 1 PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |  | PO8 | PO9 | PO10 | PO11 | PO12 | PSO |  | PSO2 | PSO3 |
| 1 | CO1 | 3 | 2 | 3 | 2 | 1 | 0 | 0 |  | 0 | 0 | 0 | 0 | 1 | 2 |  | 3 | 1 |
| 2 | CO2 | 3 | 2 | 3 | 2 | 1 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 2 |  | 3 | 1 |
| 3 | CO3 | 3 | 2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |  | 3 | 1 |
| 4 | CO4 | 3 | 2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |  | 3 | 1 |
| 5 | CO5 | 3 | 2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |  | 3 | 1 |
| SYLLABUS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No. | Content |  |  |  |  |  |  |  |  |  |  |  |  | Hours |  | COs |  |
| I | Signed numbers: Signed-Magnitude Representation, Biased Representations, Complement Representations, Two'sand 1's-Complement Numbers, Direct and Indirect Signed Arithmetic, Using Signed Positions or Signed Digits. Redundant number systems: the Carry Problem, Redundancy in Computer Arithmetic, Digit Sets and Digit-Set Conversions, Generalized Signed-Digit Numbers, Carry-Free Addition Algorithms, Conversions and Support Functions. <br> Residue number systems: RNS Representation and Arithmetic, the RNS Moduli, Difficult RNS Arithmetic Operations, Redundant RNS Representations, Limits of Fast Arithmetic in RNS. |  |  |  |  |  |  |  |  |  |  |  |  | 08 | C01 |  |  |
| II | Fast Addition and subtraction: Simple Carry-Skip Adders, Multilevel Carry-Skip Adders, Carry-Select Adders, Conditional-Sum Adder, Hybrid Adder Designs, Optimizations in Fast Adders. <br> Multioperand addition: Using Two-Operand Adders, Carry-Save Adders, Wallace and Dadda Trees, Parallel Counters, Generalized Parallel Counters, Adding Multiple Signed Numbers. |  |  |  |  |  |  |  |  |  |  |  |  | 08 | CO2 |  |  |
| III | Fast multipliers: Radix-4 Multiplication, Modified Booth's Recoding, Using Carry-Save Adders, Radix-8 and Radix-16 Multipliers. <br> Tree and array multipliers: Full-Tree Multipliers, Alternative Reduction Trees, Tree Multipliers for Signed Numbers, Partial-Tree Multipliers, Array Multipliers, Pipelined Tree and Array Multipliers. <br> Variations in multipliers: Divide-and-Conquer Designs, Additive Multiply Modules, Bit-Serial Multipliers, Modular Multipliers, The Special Case of Squaring, Combined Multiply-Add Units. |  |  |  |  |  |  |  |  |  |  |  |  | 09 | CO3 |  |  |
| IV | Fast Dividers: Basics of High-Radix Division, Radix-2 SRT Division, Using Carry-Save Adders, Choosing the Quotient Digits, Radix-4 SRT Division, General High-Radix Dividers. <br> Division by convergence: General Convergence Methods, Division by Repeated Multiplications, Division by Reciprocation, Speedup of Convergence Division, Hardware Implementation, Analysis of Lookup Table Size. |  |  |  |  |  |  |  |  |  |  |  |  | 07 | CO4 |  |  |
| v | High-throughput arithmetic: Pipelining of Arithmetic Functions, Clock Rate and Throughput, Parallel and DigitSerial Pipelines, On-Line or Digit-Pipelined Arithmetic. <br> Low-power arithmetic: The Need for Low-Power Design, Sources of Power Consumption, Reduction of Power Waste, Transformations and Trade-Offs, Some Emerging Methods |  |  |  |  |  |  |  |  |  |  |  |  | 07 |  |  |  |
| Total Hours |  |  |  |  |  |  |  |  |  |  |  |  |  | 39 |  |  |  |
| Essential Readings: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. Behrooz Parhami, "Computer Arithmetic: Algorithms and Hardware Designs", ${ }^{\text {st }}$ ed., 2000, Oxford university press. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2. Mi Lu., "Arithmetic and logic in computer systems", ${ }^{\text {st }}$ ed., 2004, John Wiley and Sons. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3. Paul Zimmermann and Richard Brent, "Modern Computer Arithmetic", $1^{\text {st }}$ ed. 2010, Cambridge university press. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Supplementary Readings: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. Donald e. Knuth., "The art of computer programming", $2^{\text {nd }}$ ed., 1985, Addison-Wesley publishing company. <br> 2. M Ercegovac, T Lang, "Digital Arithmetic", Hardware and Programming", $1^{\text {st }}$ ed., 2004, Morgan Kaufmann publishers. <br> 3. Israel Koren, "Computer Arithmetic Algorithms", $2^{\text {nd }}$ ed., 2002, A.K. Peters. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

