

National Institute of Technology Meghalaya
An Institute of National Importance

CURRICULUM

Programme Bachelor of Technology in Computer Science and Engineering Year of Regulation 2020-21

Department Computer Science and Engineering Semester VI

Course

Code
Course Name

Credit Structure Marks Distribution

L T P C
Continuous

Evaluation

Lab Test /

Viva
Total

CS 354 Compiler Design Lab 0 1 2 2 70 30 100

Course

Objectives

The Objectives of this course is to explore the principles,

algorithms, and data structures involved in the design and

construction of compilers.

Course

Outcomes

CO1
Specify and analyse the lexical, syntactic and semantic
structures of any computer programming language.

CO2

Separate the lexical, syntactic and semantic analysis into
meaningful phases for a compiler to undertake language
translation.

To implement some phases of the front-end of a general compiler.
CO3

Write a scanner, parser, and semantic analyser for limited
form of C like programming languages.

CO4
Convert source code in simple language into machine code
for a novel computer.

To implement some phases of the backt-end of a general compiler.
CO5

Describe techniques for intermediate code and machine
code optimisation.

No. COs
Mapping with Program Outcomes (POs) Mapping with PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

1 CO1 3 2 3 1 0 0 0 0 0 0 0 0 1 2 2

2 CO2 3 3 3 3 0 0 0 0 0 0 0 2 1 1 3

3 CO3 2 3 3 1 3 0 0 0 1 0 0 0 1 1 3

4 CO4 2 1 1 2 2 0 0 0 1 0 0 0 1 1 3

5 CO5 2 1 2 1 1 0 0 0 0 0 0 0 1 1 3

SYLLABUS

No. Content Hours COs

I

1) Using Lex/Flex , write a program to append line number before each
 (i) lines(empty/non-empty). (ii) non-empty lines
 Input/output streams may be files.

2) Using Lex/Flex , write a program to count number of lines, words, visible characters, total characters. Input/output streams may

be files.

4
CO1, CO2,

CO3

II

3) Using Lex/Flex , write a program to identify some keywords, identifiers, integers and real numbers from a simple C program.
 Input/output streams may be files.

4) Lex program to copy a file by replacing multiple sequences of white spaces with a single white space. [blanks/tab => blank, more

than one “ \n” => “ \n”].

5) Also add removal of comments in above program.

2
CO1, CO2,

CO3

III

6) Lex program to copy a C program by replacing each instance of the keyword float by double.

7) Write a Lex program that converts a file to “Pig Latin”. Specifically, assume the file is sequence of English words (group of letters)

separated by white space. Every time a word is encountered:
 1. If the first letter is consonant, move it to the end of the word and then add ay.
 2. If the first letter is a vowel, just add ay to the end of the word.

2
CO1, CO2,

CO3

IV
8) Using Lex/Flex , write a program to encode and decode.

2
CO1, CO2,

CO3

V
9) Using Lex/Flex , write a program to (i) identify the Roman numbers (ii) add 2 Roman numbers.

 2
CO1, CO2,

CO3

VI

10) Create a recursive predictive parser for a grammar(as given in lab class).

2

CO1, CO2,

CO3

VII
11) Create a non-recursive predictive parser(LL parser) for a grammar(as given in lab class).

 2
CO1, CO2,

CO3

VIII

12) Using Flex and Bison tools, create a calculator program that support addition,subtraction, multiplication, division, power

operations on numbers and variables. 4
CO1, CO2,

CO3

IX

13) Using Flex and Bison tools, create a translator to convert a simple program written in arbitrary language to a program in C
language. 2 CO1,CO4

X

14) Using Flex and Bison tools, create a program to convert a simple assignment expression into intermediate code.
 Ex:- input: z = ‐(a+b‐c)
 output:
 t1 = a + b
 t2 = t1 – c

2 CO1,CO5

 t3 = ‐ t2
 z = t3

Total Hours 24

Essential Readings:

1. A.V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, “Compilers-Principles, Techniques and Tools”, 2nd ed., 2006, Pearson Education.

2. K. Muneeswaran, “Compiler Design”, 1st ed., 2013, Oxford Publication.

3. P.H. Dave, H.B. Dave, “Compilers: Principles and Practice”, 1
st
 ed. 2012, Pearson Education.

Supplementary Readings:

1. Allen I. Holub, “Compiler Design in C”, 1
st
 ed.(Indian print), 2012, PHI.

2. John Levine, “Flex & Bison “, 1
st
 ed., 2009, O’reilly.

3. Torben Ægidius Mogensen, “Basics of Compiler Design”, 1
st
 ed., 2007, DIKU, University of Copenhagen

