

National Institute of Technology Meghalaya

An Institute of National Importance

CURRICULUM

Programme		ne	Bachelor of Technology in Computer Science and Engineering								Academic Year of Regulation				2018-19		
D	epartme	ent	Computer Science and Engineering									Semester				VII	
Со	urse			0						Credit	Structure			Marks D	istribution		
C	ode				ourse Nam	ıe			L	Т	Р	С	INT	MID	END	Total	
CS	413			Pattern F	Recognitio	n			3	0	0	3	50	50	100	200	
		To introduce the fundamentals of pattern recognition and its relevance to classical and modern problems								CO1	Able to explain and compare a variety of pa classification, structural pattern recognition, and pa classifier combination techniques.					-	
Course Objectives		To introduce the knowledge about state-of-the-art algorithms used in pattern recognition research To introduce Understand pattern recognition theories, such as Bayes classifier, linear discriminant analysis. To provide an understanding of pattern recognition techniques in practical problems and a main objective is to be able to identify where, when and how pattern recognition can be applied.							Course Outcomes	CO2	Able to summarize, analyze, and relate research in the pattern recognition area along with various parameter optimization technique. Apply performance evaluation methods for pattern recognition, and critique comparisons of technique made in the research literature.						
										CO3							
										CO4	Able to world p	Able to apply pattern recognition tech vorld problems such as document ecognition.		-			
	·	-	wide knowle		-		ation of j	pattern	-	CO5					lassifiers, cognizers.		
No.	COs					Mapping v	vith Progra	am Outo	comes (POs)				Мар	ping with I	SOs	
NO.	COS	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO	
1	CO1	0	1	0	1	0	0	0	0	2	0	0	0	1	2	3	
2	CO2	1	1	0	1	0	0	0	0	2	0	0	0	1	3	2	
3	CO3		0	1	1	2	0	0	0	0	0	0	0	2	3	2	
4	CO4	0	0	1	0	2	2	3	0	2	0	0	1	2	1	2	
5	CO5	0	0	1	0	2	2	0	0	2	0	0	1	1	1	3	
6	CO6	0	0	0	0	0	0	0 Sylla	0	0	0	0	0	0	0	0	
	Intro	duction	n				Content							Hours		COs	
Ι	Patter Cluste techn		gnition and s. Classific			vised, u	nsupervi		-					Hours 08		COs CO1 CO2	
	Patter Cluste techni Class Univa decisi rate discri Para	n reco ering va iques. ification ariate an on theo classifi minant meter I	gnition and s. Classific	ation; Ap iate dens ete featu assifiers, discrete f	sity, discr res, com Discrin features s: Maxir	vised, un ns; Linea riminant pound E minant	nsupervis r Algebr function Bayesian functions	a, vect s for th decisi s, Dec estimat	ne normal on theory cision sur	probabi Density and cor faces,	lity theor different ntext, Mi Normal	cases, B nimum-e density	ation Bayes error-			CO1	
II	Patter Cluste techni Class Univa decisi rate discri Paran Poster Clust Differ	rn reco ering va iques. ification ariate an classifi minant meter I riori est ering rent dis	gnition and s. Classification on nd multivation ory – discr cation, Cl functions, Estimation	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e	sity, discr res, com Discrin features s: Maxir estimation	vised, un ns; Linea riminant pound E minant m num-Lik n: Gauss ity meas	nsupervis r Algebr function ayesian functions celihood of ian case	a, vect s for th decisits, Dec estimat	for cluste	probabi Density and cor faces, sian case	lity theor different ntext, Mi Normal e; Maxim	cases, B nimum-e density tum a	ation Bayes error- and	08		CO1 CO2 CO2, CO2,	
II	Patter Cluste techni Class Univa decisi rate discri Paran Poste Clust Differ partiti Un-su likelil	rn reco ering va iques. ification ariate an on theo classifi minant meter I riori est ering rent dis ional, h ipervise nood es	gnition and s. Classifica on nd multivatory – discr cation, Cl functions, Estimation timation; B	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph th g and clu plication	sity, discr res, com Discrin features s: Maxin estimation d similar heoretic, o istering: to norma	vised, un ns; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur	nsupervis r Algebr function Bayesian functions celihood of ian case ures, Cr based., Cl ction, mi ces, K-mo	a, vect s for th decisit s, Dec estimat iterion luster v	for cluste validity densities	probabi Density and cor faces, sian case ering, M and ide	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit	ry, estim cases, B nimum-e density um a f cluster y, maxi	ation Bayes error- and ing - mum	08		CO1 CO2 CO2, CO3, CO4 CO2	
I II IV V	Patter Cluste techni Class Univa decisi rate discri Paran Poster Clust Differ partiti Un-su likelil – sim	n recogering values. iques. ification ariate an on theo classifi- minant meter I riori est ering rent dis- ional, h ipervise nood es- ilarity r n recog- n Marl	gnition and s. Classifica on nd multivatory – discr cation, Cl functions, Estimation; B stance function ierarchical, ed learning stimates, ap	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph the g and clu plication riteria fu	sity, discr res, com Discrin features s: Maxir estimation d similar eoretic, of istering: to normanic nction for basic pr	vised, un ns; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur or cluster Markov roblems	nsupervis r Algebr function ayesian functions functions eelihood of ian case oures, Cri- based., Cl ction, mi- res, K-mo- ing of HMI	a, vect s for th decisit s, Dec estimat iterion luster v ixture eans cl : Discr Ms, ty	for cluster validity densities lustering. I rete-time M	probabi Density and cor faces, sian case ering, M and ide Date des	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit cription a process, 1	ry, estim cases, B nimum-e density um a f cluster y, maxii und clust Extensio	ation Bayes error- and ing - mum ering ns to	08 08 05		CO1 CO2 CO2, CO3, CO4 CO2 CO3 CO3	
II III IV	Patter Cluste techni Class Univa decisi rate discri Paran Poster Clust Differ partiti Un-su likelil – sim	n recogering values. iques. ification ariate an on theo classifi minant meter I riori est ering rent dist ional, h ipervise nood est ilarity r n recogen n Marl	gnition and s. Classification on nd multivation ory – discre- cation, Cl functions, Estimation; B stance func- ierarchical, ed learning stimates, ap measures, c gnition usir kov model	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph the g and clu plication riteria fu	sity, discr res, com Discrin features s: Maxir estimation d similar eoretic, of istering: to normanic nction for basic pr	vised, un as; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur or cluster a Markov roblems eech reco	nsupervis r Algebr function ayesian functions functions eelihood of ian case oures, Cri- based., Cl ction, mi- res, K-mo- ing of HMI	a, vect s for th decisit s, Dec estimat iterion luster v ixture eans cl : Discr Ms, ty	for cluster validity densities lustering. I rete-time M	probabi Density and cor faces, sian case ering, M and ide Date des	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit cription a process, 1	ry, estim cases, B nimum-e density um a f cluster y, maxii und clust Extensio	ation Bayes error- and ing - mum ering ns to	08 08 05 05		CO1 CO2 CO2, CO3, CO4 CO2 CO3 CO3 CO4 CO4	
III III IV V Esse	Patter Clusto techni Class Univa decisi rate discri Paran Poster Clust Differ partiti Un-su likelil – sim Patter hidde densit	rn recog iques. ification ariate an on theo classifi minant neter I riori est ering rent dis ional, h ipervise nood es ilarity r rn recog n Marl ties, mu eadings n Recogr	gnition and s. Classifica on nd multivationy – discre- cation, Cl functions, Estimation; B stance func- ierarchical, ed learning stimates, ap measures, c gnition usin kov model altiple mixt	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph th g and clu plication riteria fu ng discret s, three ures per s	sity, discr res, com Discrin features s: Maxin estimation d similar eoretic, on stering: to norman nction for basic prestate, spe	vised, un ns; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur or cluster n Markov roblems eech reco Total	nsupervis r Algebr function ayesian functions functions elihood of ian case oures, Cr based., Cl ction, mi res, K-mo ing v models of HMI gnition a Hours	a, vect s for the decision s, December estimate iterion luster v ixture eans cl : Discre Ms, ty applica	for clustering. I densities lustering. I rete-time M pes of H tions.	probabi Density and cor faces, sian case ering, M and ide Date des Markov MM, co	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit cription a process, 1 process, 1 ontinuous	ry, estim cases, B nimum-e density um a f cluster y, maxi und clust Extensio cobserv	ation Bayes error- and ing - mum ering ns to	08 08 05 05 10		CO1 CO2 CO2, CO3, CO4 CO2 CO3 CO3 CO4 CO4	
III III IV V Esse	Patter Cluste techni Class Univa decisi rate discri Paran Poste Clust Differ partiti Un-su likelil – sim Patter hidde densit	rn recog iques. ification ariate and on theo classifi minant meter I riori est ering rent dist ional, h ipervise nood es ilarity r rn recog n Mari ties, mu eadings n Recogramentals	gnition and s. Classification nd multivation ory – discri- cation, Cl functions, Estimation; B stance func- ierarchical, ed learning stimates, ap measures, c gnition usir kov model altiple mixt	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph th g and clu plication riteria fu ng discret s, three ures per s	sity, discr res, com Discrin features s: Maxin estimation d similar teoretic, o istering: to norman nction fo te hidden basic pr state, spe	vised, un s; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur or cluster n Markov roblems eech reco Total	nsupervis r Algebr function Bayesian functions elihood of ian case ures, Cr based., Cl ction, mi res, K-mo ing / models of HMI gnition a Hours	a, vect s for th decisions, Decisions, Decisions estimate iterion luster v ixture eans cl : Discr Ms, ty applica	for cluster validity densities lustering. I rete-time M pes of H tions.	probabi Density and cor faces, sian case ering, M and ide Date des Markov MM, co	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit cription a process, 1 process, 1 ontinuous	ry, estim cases, B nimum-e density um a f cluster y, maxi und clust Extensio cobserv	ation Bayes error- and ing - mum ering ns to	08 08 05 05 10		CO1 CO2 CO2, CO3, CO4 CO2 CO3 CO3 CO4 CO4	
II III IV V Esse 1 2 3	Patter Cluste techni Class Univa decisi rate discri Paran Poste Clust Differ partiti Un-su likelil – sim Patter hidde densit	rn recogniques. iques. ification ariate and classification ariate and classification ariate and classification minant meter I riori est ering rent dis- ional, h ipervise nood es- ilarity r rn recognities, mu eadings n Recognities n Recognit	gnition and s. Classification nd multivation ory – discri- cation, Cl functions, Estimation; B stance func- timation; B stance func- timates, ap measures, c gnition usir kov model altiple mixt	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph th g and clu plication riteria fu ng discret s, three ures per s	sity, discr res, com Discrin features s: Maxin estimation d similar teoretic, o istering: to norman nction fo te hidden basic pr state, spe	vised, un s; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur or cluster n Markov roblems eech reco Total	nsupervis r Algebr function Bayesian functions elihood of ian case ures, Cr based., Cl ction, mi res, K-mo ing / models of HMI gnition a Hours	a, vect s for th decisions, Decisions, Decisions estimate iterion luster v ixture eans cl : Discr Ms, ty applica	for cluster validity densities lustering. I rete-time M pes of H tions.	probabi Density and cor faces, sian case ering, M and ide Date des Markov MM, co	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit cription a process, 1 process, 1 ontinuous	ry, estim cases, B nimum-e density um a f cluster y, maxi und clust Extensio cobserv	ation Bayes error- and ing - mum ering ns to	08 08 05 05 10		CO1 CO2 CO2, CO3, CO4 CO2 CO3 CO3 CO4 CO4	
II III IV V Esse 1 2 3 5upp	Patter Clusto techni Class Univa decisi rate discri Paran Poster Clust Differ partiti Un-su likelil – sim Patter hidde densit	rn recogniques. iques. ification ification ariate and classifi- minant meter I riori est ering rent dis- ional, h ipervise nood es- ilarity r rn recogn n Marl ties, mu eadings n Recogni ry Reading	gnition and s. Classification nd multivation ory – discri- cation, Cl functions, Estimation; B stance func- timation; B stance func- timates, ap measures, c gnition usir kov model altiple mixt	ation; Ap iate dens ete featu assifiers, discrete f Method ayesian e tions and graph th g and clu plication riteria fu ng discret s, three ures per s	sity, discr res, com Discrin features s: Maxin estimation d similar eoretic, on stering: to norman nction for te hidden basic prestate, spe	vised, un ns; Linea riminant pound E minant num-Lik n: Gauss ity meas density b Introduc al mixtur or cluster n Markov roblems eech reco Total y M. Narass Learning, utroumbas,	nsupervis r Algebr function ayesian functions functions eelihood of ian case oures, Cr based., Ch ction, mi ces, K-mo ing / models of HMI gnition a Hours imha Murty By Braga-I 4th Ed., Au	a, vect s for th decisions s, Deconstructions estimated iterion luster v ixture eans cl : Discre Ms, ty applica y and V. Neto, Sp cademic	for clustering. I rete-time M pes of H tions. Susheela De ringer Interna Press, 2009	probabi Density and cor faces, sian case ering, M and ide Date des Markov MM, co vi, Springe ational Put	lity theor different ntext, Mi Normal e; Maxim lethods o ntifiabilit cription a process, 1 process, 1 ontinuous	ry, estim cases, B nimum-e density um a f cluster y, maxi und clust Extensio cobserv	ation Bayes error- and ing - mum ering ns to	08 08 05 05 10		CO1 CO2 CO2, CO3, CO4 CO2 CO3 CO3 CO4 CO4	