			National Institute of Technology Meghalaya An Institute of National Importance													CURRICULUM		
P	rogrami	me	ne Bachelor of Technologyin Computer Science and Engineering										Academic Year of Regulation				2018-19	
D	epartm	ent Computer Science and Engineering Semester												ster		V	11	
Co	urse										Credit	Structure			Marks D	istribution		
C	ode									L	Т	Р	С	INT	MID	END	Total	
CS	415	Complex Networks								3	0	0	3	50	50	100	200	
		To provide the students with some knowledge about the definition of complex networks, graph theory, and the significance of graph theory.								Course Outcomes	CO1	Able to demonstrate the basic concept of graph theory with an example like the bridge of Konigsberg.						
		To develop the student's ability to understand the various centrality measures and their importance.									CO2	Able to explain the centrality measures of network nodes based on the degree, such as degree centrality, eigenvector centrality, and α -centrality.						
Co Obje	urse ctives	To provide the students with some knowledge about various random graphs and generalised random graphs and their importance to connect multiple complex networks.									CO3	Able to identify various random graphs and generalized random graph, degree of distributions, how average properties of a random graph changes with the number of links etc.						
		To develop the student's ability to understand the correlation between various complex networks.								-	CO4	Able to examine how the individuals of a social network discover shortest paths, even if they have local knowledge and the appearance of small-world behavior in the biological systems.						
		To develop the student's ability to understand the general approach to define and detect the building blocks of various complex networks.									CO5	Able to interpret the models of continuous growth of various networks such as Scientific papers Citation Networks, the World Wide Web network, etc.						
											CO6	Able to construct graphs with positive or negative degree-degree correlations.						
No	COc						Mapping v	vith Progra	am Outo	comes (PO	6)	Mapping with PSOs					PSOs	
INU.	COS	PC)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	CO1	2		0	0	0	0	1	2	0	1	1	0	0	2	1	1	
2	CO2	2		3	1	1	0	2	1	0	3	2	1	2	1	2	2	
3	CO3	3		2	1	0	2	3	0	1	0	1	3	1	3	2	2	
4	CO4	· 1		0	3	2	0	2	1	0	3	2	1	0	1	2	2	
6	CO3			2	0	3	2 1	2	0	2	0	1	0	0	2	3	2	
	000	· ·		-	•		•	_	SYLLA	BUS	•	· ·						
No.								Content							Hours	s COs		
Ι	Graph Basic Konig	hs and Graph theory: c definitions, Directed graphs, Weighted graphs, Bipartite graphs, Trees, Graph Theory and the Bridge of gsberg, How represent a graph;								4	CO1							
II	Centra The in Measu	ntrality Measures: e importance of being central, Connected Graphs and Irreducible Matrices, Degree and Eigenvector Centrality, easures based on Shortest Paths, Group Centrality;								rality,	6 CO2		CO2					
	Random Graphs: Erdos and Renyi (ER) Models, Degree Distribution, Trees, Cycles and Complete Subgraphs, Giant Connected Component, Scientific Collaboration Networks, Characteristic Path Length; Generalised Random Graphs: The World Wide Web, Power-Law Degree Distributions, The Configuration Model, Random Graphs with Arbitrary Degree Distribution, Scale-Free Random Graphs, Probability Generating Functions;								ected bitrary	9 CO:		CO3						
IV	Small Six D Variat	II-World networks: Degree of Separation, The Brain of a Worm, Clustering Coefficient, The Watts-Strogatz (WS) Model, ations to the Theme, Navigating Small-World Networks;									lodel,	6 CO4		CO4				
V	Mode Citatio being Mode	Idel of Growing Graphs: ation Networks and the Linear Preferential Attachment, The Barabasi-Albert (BA) Model, The importance of ing Preferential and Linear, Variations of the Theme, Can latecomers Make it? The Fitness Model, Optimisation odels;								of ation	6	6 CO5						
VI	Degree Correlations: The Internet and Other Correlation Networks, Dealing with Correlated Networks, Assortative and Disassortative Networks, Newman's Correlation Coefficient, Models of Networks with Degree-Degree Correlations:									tive	5 C		CO6					

Total Hours	36								
Essential Readings									
1. Latora V, Nicosia V, Russo G. Complex networks: principles, methods and applications. Cambridge University Press; 2017.									
2. Cohen R, Havlin S. Complex networks: structure, robustness and function. Cambridge university press; 2010.									
3. Estrada E. The structure of complex networks: theory and applications. Oxford University Press; 2012.									
Supplementary Readings									
1. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: Structure and dynamics. Physics reports. 2006 Feb 1;424(4-5):175-308.									
2. Meyn S, Meyn SP. Control techniques for complex networks. Cambridge University Press; 2008.									
3. Ganguly N, Deutsch A, Mukherjee A. Dynamics on and of complex networks: Applications to biology. Computer Science, and the Social Sciences. Birkhäuser. 2009.									