4 64 L NATIONAL	A di fit thi di a	1.000 March 1	National Institute of Technology Meghalaya An Institute of National Importance													CURRICULUM		
Pro	ogramm	Bachelor of Technology in Electrical and ElectronicsYear of RegulatPerform <t< td=""><td colspan="3">2019-20</td></t<>													2019-20			
De	partme													ster	VI			
Co		Credit Structure													Marks Distribution			
Course Code		Course Name							L		Т	Р	С		Continuous Assessment		Total	
EE352			Control Systems Lab							0	1	2	2	10 Experi		10	100	
									After th	he con	npletion o	of the cou	rse, the s	student sh	ould be a	ble to:		
		To introduce the basic concepts, elements and terminologies of control systems toolbox in MATLAB.									CO1	acquire knowledge about the control syst commands.					/stems	
	ľ	To model different physical systems (plants) in Laplace and state-space frameworks in MATLAB.									CO2	obtain the mathematical models o in transfer function and state-space						
Co	urse	To study the performance and stability of LTI systems in time							Cou	rse	CO3	analyse and define the LTI system performance and stability in both time-domain and frequency domain.						
	ctives	and frequency domains using MATLAB To design compensators/ controllers using graphical							Outcome		CO4	compute the Root locus and design the appropriate						
	-	techniques in MATLAB.									CO5	compensator using Root locus technique. compute Bode, Nyquist plots and design the appropriate compensator using Bode plot technique.						
	-										CO6	approp	Tate com	pensator	using bot	le plot tech	inique.	
No.			Mapping with Program Outcomes (POs)											Mapping with PSOs				
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	7 P	9O8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	CO1	3	2	1	0	2	2	2		0	0	2	0	2	1	1	1	
2	CO2	1	3	3	2	2	1	1		1	0	1	0	2	3	2	2	
3	CO3	2	3	3	3	2	2	1		1	2	1	1	2	3	2	3	
4	CO4	2	2	3	2	2	2	2		1	2	2	1	2	2	3	3	
5	CO5	2	2	3	2	2	2	2		1	2	2	1	2	3	3	3	
6	CO6																	
								SYLLA	ABUS									
No.		Content H									Hours	rs COs						
1	Introductory Laboratory Class									03	All CO's							

2	Introduction to Control Engineering MATLAB Commands	03	CO1				
3	Block Diagram Reduction and Pole-Zero plot	03	CO2				
4	Dynamic response of a plant model with different inputs	03	CO2				
5	Determination of Step & Impulse Response for First and Second Order Unity Feedback System	03	CO3				
6	Determination of Damping Effect on the Standard Second Order System	03	CO3				
7	Study the Transient Performance Specifications of Standard Second Order System	03	CO3				
8	Determination of Impulse and Step Response for a Type '0' Type '1' and Type '2' Systems	03	CO3				
9	Determination of Root Locus plot using MATLAB control system toolbox	03	CO4				
10	Determination of Bode plot using MATLAB control system toolbox	03	CO5				
11	Design the appropriate compensator using Root locus and Bode plot technique	03	CO4 CO5				
12	Make – up Laboratory Class	03					
	Total Hours	36					
Esse	ntial Readings		1				
1	. K. Ogata, "Modern Control Engineering", Prentice Hall, 5 th Edition, 2010.						
2	. I. J. Nagrath, M. Gopal, "Control System Engineering", New Age International, 6 th Edition, 2018.						
1	. Supplementary Readings						
2. N. S. Nise, "Control System Engineering", Wiley India, 7 th Edition, 2015.							
3	. R. C. Dorf, R. H. Bishop, "Modern Control Systems", Pearson, 13 th Edition, 2017.						