Logic Design of Quantum Circuits and Memristor-based Systems

OBJECTIVES

The primary objectives of the course are to expose the participants in the following:

- a) Evolution of logic design paradigm over the years, and emerging technologies like quantum circuits and memristors.
- b) Design and optimization of quantum circuits for logic design applications.
- c) Physical architectures and constraints in the design of quantum circuits, and the corresponding technology mapping.
- d) Working principles of memristors and their use in logic design and neuromorphic computing applications.

SPEAKERS

Prof. Bhargab B. Bhattacharya is a Professor of Computer Science and Engineering in the Advanced Computing and Microelectronics Unit, Indian Statistical Institute Calcutta. His research interests include VLSI design and test, VLSI physical design, nanotechnology and giga-scale integration.

Prof. Robert Wille is a Full Professor in the Institute for Integrated Circuits, Johannes Kepler University Linz, Austria. His research interests include reversible and quantum computing, and development of design technologies with particular focus on the design, verification and test of circuits and systems, for both conventional and emerging technologies.

Dr. KamalikaDatta is an Assistant Professor in the Department of Computer Science and Engineering, National Institute of Technology Meghalaya. Her research interest include reversible and quantum circuit synthesis and optimization, memristors-based system design, and embedded systems.

SCHEDULE

Module A: Introductory Module Speaker: Bhargab B. Bhattacharya

Lecture 1: (Aug 08, 9:30-10:30 & 10:45-11:45)	2 hours
Evolution of logic design techniques over the years	
(conventional approach, binary decision diagram,	
Multiplexer based synthesis)	
Lecture 2: (Aug 08, 14:00-15:00& 15:15-16:15)	2 hours
Other non-conventional logic design methodologies	
(Reed-Muller canonical form, exclusive-OR sum of	

Products form, threshold logic)

Module B: Logic design using Memristor Speaker: Dr. Kamalika Datta

Lecture 3: (Aug 09, 9:30-10:30) Introduction to Memristor, principle of op simulation models, memristor fabrication	•	
Lecture 4: (Aug 09, 10:45-11:45 & 14: 00-15: 00) Logic design techniques using memristors function using memristors, synthesis of IMPLY functions	, implementing IMPLY	
Lecture 5: (Aug 10, 9:30-10:30) 1 hour Memristor crossbar array, issues and sneak path avoidance, using memristors to build threshold logic gates, applications to		
neuromorphic computing		

Module C: Quantum circuits and their design Speaker: Prof. Robert Wille

Lecture 6: (Aug 10, 10:45-11:45 & 12: 00-13: 00) -- 2 hours

Basics: Quantum circuits, reversible circuits, and their applications
Lecture 7: (Aug 11, 9:30-10:30) -- 1 hour Design of reversible circuits (Synthesis and Verification)
Lecture 8: (Aug 11, 10:45-11:45) -- 1 hour Design of quantum circuits (Decomposition and Optimization)
Lecture 9: (Aug 12, 9:30-10:30 & 10: 45-11: 45) -- 2 hour Physical architectures and constraints (1D/2D quantum circuits, Nearest neighbour constraints)
Lecture 10: (Aug 12, 12: 00-13: 00) -- 1 hour Demonstration of decomposition, mapping and optimisation tools

Mid Term Test: Aug 10, 15:00-16:00

End Term Test: Aug 12, 15:00-17:00

Note: Lecture notes will be provided; hands on session will be carried out using Revkit, ABC tool and SPICE

REGISTRATION & PAYMENT DETAILS

The registration fees for attending the course is as follows:

Industry/ Research Organizati	ons: Rs. 10000	
Academic Institutions:	Rs. 5000	
Student :	Rs. 2500	
Please register using the following link:		

http://www.gian.iitkgp.ac.in/GREGN/index

Select our course and make payment using the following details:

Payment Mode: NEFT/RTGS/Fund Transfer

A/C no: NITMEG First name of the applicant Date of Birth (DDMMYY)GIAN For Example: If an applicant's name is Anup Ghosh and date of birth is 12-06-1984. Beneficiary account number will be : NITMEGANUP120684GIAN

Beneficiary Name	:	NIT Meghalaya fee account
IFSC Code	:	HDFC0000240
Branch Name	:	Sandoz Branch
Last date of Registrat	ion:	31 st Jul <i>y,</i> 2016