



**National Institute of Technology Meghalaya**  
An Institute of National Importance

**CURRICULUM**

| Programme         | Doctor of Philosophy (Ph.D.)                                                                                                                  |                 |                  |     | Year of Implementation                                                                                                                                                          |   |                    | 2025-26 |               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------|---------|---------------|
| Department        | Chemical and Biological Sciences                                                                                                              |                 |                  |     | Semester                                                                                                                                                                        |   |                    | I/II    |               |
| Course Code       | Course Name                                                                                                                                   | Prerequisite    | Credit Structure |     |                                                                                                                                                                                 |   | Marks Distribution |         |               |
|                   |                                                                                                                                               |                 | L                | T   | P                                                                                                                                                                               | C | INT                | MID     | END           |
| CB706             | Microbial Technology                                                                                                                          | Nil             | 3                | 0   | 0                                                                                                                                                                               | 3 | 50                 | 50      | 100 200       |
| Course Objectives | To introduce the student the fundamentals of microbial technology                                                                             | Course Outcomes | COs              | CO1 | Students will understand the basic concepts of microbial technology.                                                                                                            |   |                    |         | Understanding |
|                   | To introduce the students with the diverse technologies and the varied applications achieved through microbial systems important to industry. |                 |                  | CO2 | Students will learn about the various microbial products and related techniques used for production.                                                                            |   |                    |         | Applying      |
|                   | To understand microbial products and their applications in environmental science and agriculture.                                             |                 |                  | CO3 | Students will learn about the various applications of microbes used to combat pollution and climate change, as well as the use of microbes in agriculture in a sustainable way. |   |                    |         | Analysing     |
|                   | To understand microbial products and their applications in medical and synthetic microbiology                                                 |                 |                  | CO4 | Students will acquire knowledge of the human microbiome and their role in human health, along with detailed antimicrobial molecules and biosensors.                             |   |                    |         | Analysing     |
|                   | To make them aware of the frontier sciences and technologies in microbiology                                                                  |                 |                  | CO5 | Students will learn about the prospects of microbial technologies, such as the use of Artificial Intelligence/ Machine Learning (AI/ML) and their use in microbiome sciences.   |   |                    |         | Analysing     |

**SYLLABUS**

| No.         | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours | COs            |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| I           | <b>Fundamentals of Microbial Technology</b><br>History and development of microbial biotechnology, microbial physiology and metabolism, microbial diversity, industrially relevant strains, cultivation and characterization of microbes.                                                                                                                                                                                                                   | 4     | CO1            |
| II          | <b>Industrial Microbiology</b><br>Microbes in industry, Metabolic engineering and Bioprocess engineering, Fermentation technology and biomanufacturing, Microbial enzymes, Microbes in food and beverages (food technology and fermented foods), Bio-based chemicals (ethanol, succinic acid, polylactic acid), Biofuels (Bioethanol and Biodiesel), Bioplastics, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Synthetic biology. | 10    | CO2            |
| III         | <b>Environmental and Agricultural Microbiology</b><br>Microbes in bioremediation (hydrocarbons, heavy metals and pesticides), microbial wastewater treatment, microbial fertilizer, biopesticides and microbial solutions for climate change (microbial carbon capture).                                                                                                                                                                                    | 10    | CO3            |
| IV          | <b>Medical and Synthetic Microbiology</b><br>Human microbiome (Sources, health effects, Faecal microbiota transplant, FMT), Production of antibiotics and antimicrobial molecules, Biosensors for microbial detection and phage therapy.                                                                                                                                                                                                                    | 10    | CO4            |
| V           | <b>Emerging Microbial Technologies and Future Directions</b><br>Artificial Intelligence/ Machine Learning (AI/ML) in microbial technologies, AI in microbial genome annotation and metabolic pathway prediction, microbiome engineering, Machine learning for microbiome data analysis and drug discovery                                                                                                                                                   | 8     | CO5            |
| Total Hours |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Total Hours 42 |

**Readings**

1. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). *Principles of fermentation technology*. Elsevier.
2. Pareek, R. P., & Pareek, N. (2019). *Agricultural microbiology*. Scientific Publishers.
3. Mitchell, R., & Gu, J. D. (Eds.). (2010). *Environmental microbiology*. John Wiley & Sons.
4. Lee, S. Y., Nielsen, J., & Stephanopoulos, G. (2022). *Principles in Microbiome Engineering*. John Wiley & Sons.