National Institute of Technology Meghalaya **CURRICULUM** An Institute of National Importance **Master of Technology** Year of Regulation 2025 Programme **Civil Engineering** II Department Semester Credit Structure Marks Distribution Course Pre-requisite Course Name Code L C INT **MID END** Total Air Quality Monitoring and 3 0 3 **50 50** 100 200 **CE 536 NIL Control Technologies** Able to Identify major air pollutants, their sources, and To provide in-depth knowledge of air pollution sources, dispersion, and its environmental and health impacts. effects on health and the environment. To familiarize students with the principles and instrumentation used in air quality monitoring. Be able demonstrate knowledge of air sampling methods and To analyze and interpret ambient air quality data using CO2 monitoring instruments for ambient and stack emissions. standard protocols. Be able to analyze air quality data using standard indices and To examine various air pollution control technologies for assess pollution trends. CO3 Course Course gaseous and particulate pollutants. Be able to design and evaluate control devices for particulate Objectives Outcomes To understand regulatory frameworks and air quality CO4 and gaseous pollutants. management strategies. Be able to interpret national and international air quality CO5 standards and formulate mitigation strategies. **SYLLABUS** No. Content Hours COs Fundamentals of Air Pollution: Classification and sources of air pollutants; Atmospheric chemistry and transformation of 5 CO1, CO 2 pollutants; Effects on human health, ecosystems, and materials; Indoor vs. outdoor air pollution; Air quality indices (AQI) Air Quality Monitoring and Instrumentation: Ambient air sampling methods: high-volume sampler, PM_{2.5} & PM₁₀ 7 samplers; Stack sampling techniques (isokinetic sampling); Continuous Emission Monitoring Systems (CEMS); Gas analyzers: CO2, CO3, NDIR, chemiluminescence, FID; Real-time and low-cost sensors CO₄ Data Analysis and Dispersion Modeling: Statistical analysis of air quality data; Source apportionment techniques; Dispersion 9 modeling: Gaussian Plume Model; AERMOD, CALPUFF basics; Uncertainty and error analysis in monitoring CO2, CO3, CO₄ Particulate Control Technologies: Gravity settling chambers, cyclones, baghouse filters; Electrostatic precipitators (ESP); CO4, CO5 7 Wet scrubbers and inertial separators; Design and efficiency evaluation; Case studies from industries Gaseous Pollutant Control Technologies: Absorption towers and wet scrubbers; Adsorption systems (activated carbon, CO4, CO5 7 zeolites); Catalytic and thermal incinerators; Flue gas desulfurization (FGD) and NOx reduction techniques; Control of VOCs and odorous gases Regulatory Framework and Management: National Ambient Air Quality Standards (NAAQS – India); WHO air quality CO4, CO5 7 guidelines; Emission standards and CPCB/State PCB norms; Air Quality Management Plans (AQMPs); Role of policy, public awareness, and emerging technologies (IoT, AI)

Essential Readings

1. C. S. Rao, *Environmental Pollution Control Engineering*, 4th ed. New Delhi, India: New Age International, 2022.

Total Hours

- 2. R. Kumar and M. Gupta, Air Quality Management: Monitoring, Control and Health Impacts, 1st ed., Elsevier, 2022.
- 3. Y. Wang, W. Zhang, and Y. Chen, Air Pollution Monitoring and Control: Recent Advances and Future Directions, 1st ed., Springer, 2023.

Supplementary Readings

- 1. CPCB, USEPA, WHO reports and technical guidelines, recent publications.
- 2. M. G. Rasul and A. N. Akbarzadeh, Environmental Pollution Control: Air, Water, and Soil, 2nd ed., CRC Press, 2024.
- 3. P. Kumar and L. Morawska, Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview, Applications, and Challenges, 1st ed., Elsevier, 2021.

42