National Institute of Technology Meghalaya **CURRICULUM** An Institute of National Importance **Master of Technology** Year of Regulation 2025 Programme II Department **Civil Engineering** Semester Credit Structure Marks Distribution Course Pre-requisite Course Name Code L C INT MID **END** Total 3 0 0 3 **50** 100 **NIL 50** 200 **Environmental Quality Modelling CE 548** Study of air pollution episodes. Reasoning of the entire Able to monitor the ambient air quality episode, identification of the parameters, conditions, mechanisms. Study of sampling types and methods for ambient air and Ability to identify air pollution problems and interpret stack CO2 criteria air quality data Study of macro and micro meteorology for understanding the Ability to recognize various environmental transformation dispersion of pollutants. Course Simple and complex modeling for point source, line source Course CO₃ processes of pollutants under extreme weather condition. Objectives and area source. Outcomes Ability to interpret meteorological data and develop The cycle of air pollution will enable the student to first capability to assessment of project proposal, air quality CO4 identify the pollutants and their sources and then the transport pollution index for any region mechanisms of the pollutants followed by the affected Ability to justify the use of pollution control equipment and population and there control mechanisms. CO5 their design **SYLLABUS** No. Content Hours COs Introduction: 9 CO1, CO 2 Introduction; Laws & Regulations; National Ambient Air Quality Standards, Air Pollution Meteorology **Basics of Air Pollution Modelling:** II 9 CO2, CO3, Transport, dilution, modification, and removal of pollutants; Wind velocity profiles, Atmospheric stability; Pasquill-CO4 Gifford stability classes; Inversions; temperature gradient; Plume behavior; Mixing heights **Kinetics of air pollutants:** III 12 CO2, CO3. Atmospheric advection-diffusion of pollutants; Fick's law of diffusion; No-flow boundary effect; Models for no-CO₄ flow boundary conditions; Reynolds theory of turbulence; Atmospheric boundary layer; Modelling: Classification of air quality models, Gaussian plume model for a point source, Plume rise, Brigg's and Holand's equations for estimating plume rise; Dispersion coefficients; Buoyancy and flux parameters for plume rise; Gaussian approach to special cases of point, area and line sources of pollution; Pollutant concentration in the wake of building; Complex terrain effect; **Dispersion Models:** 12 CO4, CO5, Deterministic models; Puff model; Box model; Special application of dispersion models; Advanced techniques in air quality modeling: Artificial Neural Networks (ANN), Hybrid modeling approach, Fuzzy logic theory (FLT), and

Total Hours

1. D. T. McKinney, Environmental Systems Modeling and Simulation, New York, NY, USA: Springer, 2024.

1. J. W. Clark and R. C. Richter, Modeling of Environmental and Water Systems, 3rd ed., New York, NY, USA: Springer, 2023.

2. A. Z. Keller, M. M. Ghanbarian and A. G. Khalil, Environmental Modelling and Simulation, 2nd ed., Boca Raton, FL, USA: CRC Press, 2022.

3. M. Thynell, R. A. Falconer, and H. M. Apul, Water Quality Modelling: Understanding River Systems and Pollutant Behavior, London,

M. B. Beck and L. M. Smith, Environmental Quality Analysis: Theory and Practice for Pollution Control, Oxford, U.K.: Elsevier, 2021.
S. A. Socolofsky and G. H. Jirka, Environmental Fluid Mechanics: Theories and Applications, 2nd ed., Hoboken, NJ, USA: Wiley, 2020.

Environmental wind tunnel (physical) models.

U.K.: IWA Publishing, 2021.

Essential Readings

Supplementary Readings

42