The second of th

National Institute of Technology Meghalaya

An Institute of National Importance

CURRICULUM

ATIONAL INSTIT	UTE OF TECHN	OLOGY WEST				Ar	1 Institute	of Natio	onal Import	ance							
	ogramı										Year of Regulation				2018-19		
D	epartme	ent Mathematics									Semester				IV		
Co	urse	Course Name Pre-requisite								Credit	t Structure Marks Distribution					ı	
Code							•			T	P	C	INT	MID	END	Total	
MA 552		Advanced Number Theory					NIL		3	0	0	3	50	50	100	200	
										CO1	Understand the concept of congruences and use various results related to congruences including the Chinese Remainder Theorem and congruences of higher degree.						
Course Objectives		3							Course Outcomes	CO2	Understand the concept of quadratic Gaussian sums and reciprocity.						
										СОЗ	Know about Gauss and Jacobi Sums and their applications.						
										CO4	Solve certain types of Diophantine equations.						
						CO5	Know writing real number in continued fraction and applications involving continued fraction.										
No.	COs	Mapping with Program Outcomes (POs)									Mapping with PSOs				PSOs		
110.		PC	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	CO1																
2	CO2																
3	CO3	-															
5	CO ₄	-															
								SYLLAI	BUS								
No.						(Content							Hours		Cos	
I	Review of congruences, Euler's function, results of Fermat, Euler and Wilson; linear congruences, Chinese remainder theorem. Primitive roots and the group structure of $U(\mathbb{Z}/n\mathbb{Z})$; applications to congruences of higher degree.													8		CO1	
II	Quadratic Gaussian Sums and Reciprocity: Quadratic Residues, Gaussian reciprocity law, the Jacobi symbol, Quadratic Gauss Sums, Sign of the Quadratic Gauss Sum.													8		CO2	
III	Gauss	and Ja	cobi Sums: F	inite Field	d and its p	roperties	, Gauss S	Sums, Jac	cobi sum, th	ne equat	tion $x^n + 1$	$y^n = 1.$		8 CO3		CO3	
IV	Gauss and Jacobi Sums: Finite Field and its properties, Gauss Sums, Jacobi sum, the equation $x^n + y^n = 1$. Diophantine equations. Linear equations, the equation $x^2 + y^2 = z^2$. Method of Descent; the equation $x^4 + y^4 = z^2$.												$y^4 =$	6 (CO4	
V	Simple continued fractions. Infinite continued fractions and irrational numbers. Periodic continued fractions.													6		CO5	
	Total Hours													36	36		
Esse	ntial R	eading	s														

- 1. S. K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory", Springer, 2nd edition, 2009.
- 2. I. Niven and H. S. Zuckerman, "An Introduction to the Theory of Numbers", Wiley, 5th edition, 2005.

Supplementary Readings

- 1. J. H. Silverman, "A Friendly Introduction to Number Theory", Pearson Education India, 4th edition, 2014.
- 2. D. M. Burton, "Elementary Number Theory", McGraw Hill Education, 7th edition, 2017.